Integrating Science through Bayesian Belief Networks: Case study of Lyngbya in Moreton Bay
نویسندگان
چکیده
Bayesian Belief Networks (BBNs) are emerging as valuable tools for investigating complex ecological problems. In a BBN, the important variables in a problem are identified and causal relationships are represented graphically. Underpinning this is the probabilistic framework in which variables can take on a finite range of mutually exclusive states. Associated with each variable is a conditional probability table (CPT), showing the probability of a variable attaining each of its possible states conditioned on all possible combinations of it parents. Whilst the variables (nodes) are connected, the CPT attached to each node can be quantified independently. This allows each variable to be populated with the best data available, including expert opinion, simulation results or observed data. It also allows the information to be easily updated as better data become available
منابع مشابه
Preliminary assessment of the performance of Hyperion in coastal waters. Cal/Val activities in Moreton Bay, Queensland, Australia
Moreton Bay is the Australian EO1-Hyperion coastal site used for Cal/Val activities. Moreton Bay shows spatial gradients in optical depth, bathymetry, and substrate composition. The turbid and humic river inputs, as well as the open ocean flushing, determine the water quality of the bay. Recently lyngbya toxic algae blooms have become a serious environmental and health concern. The field campai...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملGreen Supply Chain Risk Network Management and Performance Analysis: Bayesian Belief Network Modeling
With the increase in environmental awareness, competitions and government policies, implementation of green supply chain management activities to sustain production and conserve resources is becoming more necessary for different organizations. However, it is difficult to successfully implement green supply chain (GSC) activities because of the risks involved. These risks alongside their resourc...
متن کاملProject Portfolio Risk Response Selection Using Bayesian Belief Networks
Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...
متن کامل